k -Anonymous Data Mining: A Survey
نویسندگان
چکیده
Data mining technology has attracted significant interest as a means of identifying patterns and trends from large collections of data. It is however evident that the collection and analysis of data that include personal information may violate the privacy of the individuals to whom information refers. Privacy protection in data mining is then becoming a crucial issue that has captured the attention of many researchers. In this chapter, we first describe the concept of k-anonymity and illustrate different approaches for its enforcement. We then discuss how the privacy requirements characterized by k-anonymity can be violated in data mining and introduce possible approaches to ensure the satisfaction of k-anonymity in data mining.
منابع مشابه
Privacy Preserving Updates to Sliced Anonymous Data Bases
Privacy is the main concern in the present world. Privacy is becoming an increasingly important issue in many data mining applications in various fields like medical research, intelligence agencies, hospital records maintenance etc. Suppose there exsists an anonymous database (e.g. containing medical records) then the objectives include how to still preserve the privacy while updates are being ...
متن کاملCurrent Developments of k-Anonymous Data Releasing
Disclosure-control is a traditional statistical methodology for protecting privacy when data is released for analysis. Disclosure-control methods have enjoyed a revival in the data mining community, especially after the introduction of the k-anonymity model by Samarati and Sweeney. Algorithmic advances on k-anonymisation provide simple and effective approaches to protect private information of ...
متن کاملT Evaluating the Classification Accuracy of Data Mining Algorithms for Anonymized Data
Recent advances in hardware technology have increased storage and recording capability with regard to personal data on individuals. This has created fears that such data could be misused. To alleviate such concerns, data was anonymized and many techniques were recently proposed on performing data mining tasks in ways which ensured privacy. Anonymization techniques were drawn from a variety of r...
متن کاملAn Approach to Overcome Inference Channels on k-anonymous Data
The concept of k-anonymity protection model has been proposed as an effective way to protect the identities of subjects in a disclosed database. However, from a k-anonymous dataset it may be possible to directly infer private data. This direct disclosure is called attribute linkage. k-anonymity also suffer to another form of attack based on data mining results. In fact, data mining models and p...
متن کاملPattern-Preserving k-Anonymization of Sequences and its Application to Mobil- ity Data Mining
Sequential pattern mining is a major research field in knowledge discovery and data mining. Thanks to the increasing availability of transaction data, it is now possible to provide new and improved services based on users’ and customers’ behavior. However, this puts the citizen’s privacy at risk. Thus, it is important to develop new privacy-preserving data mining techniques that do not alter th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008